{ "id": "1811.00718", "version": "v1", "published": "2018-11-02T03:00:45.000Z", "updated": "2018-11-02T03:00:45.000Z", "title": "Quantitative bounds in the inverse theorem for the Gowers $U^{s+1}$-norms over cyclic groups", "authors": [ "Frederick Manners" ], "comment": "123 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "We provide a new proof of the inverse theorem for the Gowers $U^{s+1}$-norm over groups $H=\\mathbb Z/N\\mathbb Z$ for $N$ prime. This proof gives reasonable quantitative bounds (the worst parameters are double-exponential), and in particular does not make use of regularity or non-standard analysis, both of which are new for $s \\ge 3$ in this setting.", "revisions": [ { "version": "v1", "updated": "2018-11-02T03:00:45.000Z" } ], "analyses": { "keywords": [ "inverse theorem", "cyclic groups", "worst parameters", "non-standard analysis", "double-exponential" ], "note": { "typesetting": "TeX", "pages": 123, "language": "en", "license": "arXiv", "status": "editable" } } }