{ "id": "1811.00468", "version": "v1", "published": "2018-11-01T16:07:45.000Z", "updated": "2018-11-01T16:07:45.000Z", "title": "The stability of finite sets in dyadic groups", "authors": [ "Tom Sanders" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We show that there is an absolute $c>0$ such that any subset of $\\mathbb{F}_2^\\infty$ of size $N$ is $O(N^{1-c})$-stable in the sense of Terry and Wolf. By contrast a size $N$ arithmetic progression in the integers is not $N$-stable.", "revisions": [ { "version": "v1", "updated": "2018-11-01T16:07:45.000Z" } ], "analyses": { "keywords": [ "finite sets", "dyadic groups", "arithmetic progression" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }