{ "id": "1811.00060", "version": "v1", "published": "2018-10-31T18:49:36.000Z", "updated": "2018-10-31T18:49:36.000Z", "title": "On the Complexity of Properties of Transformation Semigroups", "authors": [ "Trevor Jack" ], "categories": [ "math.GR" ], "abstract": "We investigate the computational complexity for determining various properties of a finite transformation semigroup $S$ given by generators. In particular, we show that checking whether an element of $S$ is regular is PSPACE-complete. We give polynomial time algorithms for enumerating left/right identities, finding a left/right zero, checking nilpotence, and checking if a semigroup satisfies a fixed equation.", "revisions": [ { "version": "v1", "updated": "2018-10-31T18:49:36.000Z" } ], "analyses": { "subjects": [ "20M20" ], "keywords": [ "properties", "polynomial time algorithms", "finite transformation semigroup", "computational complexity", "enumerating left/right identities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }