{ "id": "1810.13136", "version": "v1", "published": "2018-10-31T07:33:59.000Z", "updated": "2018-10-31T07:33:59.000Z", "title": "Finite generation of the algebra of type A conformal blocks via birational geometry II: higher genus", "authors": [ "Han-Bom Moon", "Sang-Bum Yoo" ], "comment": "24 pages; comments welcome", "categories": [ "math.AG", "math.RT" ], "abstract": "We show finite generation of the algebra of type A conformal blocks over arbitrary stable curves of any genus. As an application we construct a flat family of irreducible normal projective varieties over the moduli stack of stable pointed curves, whose fiber over a smooth curve is a moduli space of semistable parabolic bundles. This generalizes a construction of a degeneration of the moduli space of vector bundles done in a recent work of Belkale and Gibney.", "revisions": [ { "version": "v1", "updated": "2018-10-31T07:33:59.000Z" } ], "analyses": { "subjects": [ "14D06", "14D20", "14D22", "14D23", "14E05", "14E15", "14E30" ], "keywords": [ "finite generation", "conformal blocks", "birational geometry", "higher genus", "moduli space" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }