{ "id": "1810.12998", "version": "v1", "published": "2018-10-30T20:44:46.000Z", "updated": "2018-10-30T20:44:46.000Z", "title": "Cardinal inequalities for $S(n)$-spaces", "authors": [ "Ivan S. Gotchev" ], "comment": "13 pages", "categories": [ "math.GN" ], "abstract": "Hajnal and Juh\\'asz proved that if $X$ is a $T_1$-space, then $|X|\\le 2^{s(X)\\psi(X)}$, and if $X$ is a Hausdorff space, then $|X|\\le 2^{c(X)\\chi(X)}$ and $|X|\\le 2^{2^{s(X)}}$. Schr\\\"oder sharpened the first two estimations by showing that if $X$ is a Hausdorff space, then $|X|\\le 2^{Us(X)\\psi_c(X)}$, and if $X$ is a Urysohn space, then $|X|\\le 2^{Uc(X)\\chi(X)}$. In this paper, for any positive integer $n$ and some topological spaces $X$, we define the cardinal functions $\\chi_n(X)$, $\\psi_n(X)$, $s_n(X)$, and $c_n(X)$, called respectively $S(n)$-character, $S(n)$-pseudocharacter, $S(n)$-spread, and $S(n)$-cellularity, and using these new cardinal functions we show that the above-mentioned inequalities could be extended to the class of $S(n)$-spaces. We recall that the $S(1)$-spaces are exactly the Hausdorff spaces and the $S(2)$-spaces are exactly the Urysohn spaces.", "revisions": [ { "version": "v1", "updated": "2018-10-30T20:44:46.000Z" } ], "analyses": { "subjects": [ "54A25", "54D10" ], "keywords": [ "cardinal inequalities", "hausdorff space", "urysohn space", "cardinal functions", "topological spaces" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }