{ "id": "1810.12960", "version": "v1", "published": "2018-10-30T18:40:46.000Z", "updated": "2018-10-30T18:40:46.000Z", "title": "Existence, multiplicity and regularity of solutions of elliptic problem involving non-local operator with variable exponents and concave-convex nonlinearity", "authors": [ "Reshmi Biswas", "Sweta Tiwari" ], "categories": [ "math.AP" ], "abstract": "In this paper, first we introduce the variable exponent fractional Sobolev space $W^{s(x,y),q(x),p(x,y)}(\\Omega).$ Then, using variational methods we study the existence and multiplicity of solution of the following variable order non-local problem involving concave-convex type nonlinearity: \\begin{align*} (-\\Delta)_{p(\\cdot)}^{s(\\cdot)} u(x)&=\\lambda\\mid u(x)\\mid^{\\alpha(x)-2}u(x)dx+f(x,u),\\hspace{3mm} x\\in \\Omega, % u&>0 ,\\hspace{15mm} x\\in \\Omega, u&=0 ,\\hspace{38mm}x\\in \\mathcal{C}\\Omega:=\\mathbb R^n\\setminus\\Omega, \\end{align*} where $\\lambda>0,$ $p\\in C(\\overline{\\Omega}\\times \\overline{\\Omega},(1,\\infty))$, $s\\in C(\\overline{\\Omega}\\times\\overline{\\Omega}, (0,1))$ and $q,\\alpha\\in C(\\overline{\\Omega},(1,\\infty))$ and $f:\\Omega\\times\\mathbb R\\rightarrow[0,\\infty)$ is a Carat\\'{e}odory function with subcritical growth. We also prove the uniform estimate for the solution of the above problem.", "revisions": [ { "version": "v1", "updated": "2018-10-30T18:40:46.000Z" } ], "analyses": { "keywords": [ "elliptic problem", "non-local operator", "concave-convex nonlinearity", "multiplicity", "regularity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }