{ "id": "1810.12791", "version": "v1", "published": "2018-10-30T14:57:48.000Z", "updated": "2018-10-30T14:57:48.000Z", "title": "Logarithmic bounds for Roth's theorem via almost-periodicity", "authors": [ "Thomas F. Bloom", "Olof Sisask" ], "comment": "21 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "We give a new proof of logarithmic bounds for Roth's theorem on arithmetic progressions, namely that if $A \\subset \\{1,2,\\ldots,N\\}$ is free of three-term progressions, then $\\lvert A\\rvert \\leq N/(\\log N)^{1-o(1)}$. Unlike previous proofs, this is almost entirely done in physical space using almost-periodicity.", "revisions": [ { "version": "v1", "updated": "2018-10-30T14:57:48.000Z" } ], "analyses": { "subjects": [ "11B30", "11K70", "28C10" ], "keywords": [ "roths theorem", "logarithmic bounds", "almost-periodicity", "arithmetic progressions" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }