{ "id": "1810.12475", "version": "v1", "published": "2018-10-30T01:22:29.000Z", "updated": "2018-10-30T01:22:29.000Z", "title": "A Serre presentation for the $\\imath$quantum groups", "authors": [ "Xinhong Chen", "Ming Lu", "Weiqiang Wang" ], "comment": "29 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $(\\bf U, \\bf U^\\imath)$ be a quasi-split quantum symmetric pair of arbitrary Kac-Moody type, where \"quasi-split\" means the corresponding Satake diagram contains no black node. We give a presentation of the $\\imath$quantum group $\\bf U^\\imath$ with explicit $\\imath$Serre relations. The verification of new $\\imath$Serre relations are reduced to some new q-binomial identities. Consequently, $\\bf U^\\imath$ is shown to admit a bar involution under suitable conditions on the parameters.", "revisions": [ { "version": "v1", "updated": "2018-10-30T01:22:29.000Z" } ], "analyses": { "keywords": [ "quantum group", "serre presentation", "quasi-split quantum symmetric pair", "serre relations", "corresponding satake diagram contains" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }