{ "id": "1810.11898", "version": "v1", "published": "2018-10-28T22:29:20.000Z", "updated": "2018-10-28T22:29:20.000Z", "title": "Small Values of Indefinite Diagonal Quadratic Forms at Integer Points in at least five Variables", "authors": [ "Paul Buterus", "Friedrich Götze" ], "categories": [ "math.NT" ], "abstract": "For any $\\epsilon >0$ we derive an effective estimate for a solution of $|Q[m]| < \\epsilon$ in non-zero integral points $m \\in \\mathbb Z^d \\setminus \\{0\\}$ in terms of the signature $(r,s)$ and the largest eigenvalue, where $Q[x] = \\sum_{i=1}^d \\lambda_i x_i^2$ is a non-singular indefinite diagonal quadratic form of dimension $d \\geq 5$. In order to prove our result, we extend an approach of Birch and Davenport(1958b) to higher dimensions combined with a theorem of Schlickewei (1985) on small zeros of integral quadratic forms.", "revisions": [ { "version": "v1", "updated": "2018-10-28T22:29:20.000Z" } ], "analyses": { "subjects": [ "11P21" ], "keywords": [ "integer points", "small values", "non-singular indefinite diagonal quadratic form", "integral quadratic forms", "non-zero integral points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }