{ "id": "1810.11845", "version": "v1", "published": "2018-10-28T17:57:03.000Z", "updated": "2018-10-28T17:57:03.000Z", "title": "Moduli of rank 1 isocrystals", "authors": [ "Efstathia Katsigianni" ], "comment": "22 pages, Comments are welcome", "categories": [ "math.AG" ], "abstract": "In this article we express the set of rank 1 isocrystals on a proper curve as a subset of the de Rham moduli space, defined by Simpson and Langer. Using results from the theory of Berkovich spaces, we compare the $\\ell$-adic cohomology of this subspace with the $\\ell$-adic cohomology of the whole moduli space. This confirms a conjecture of Deligne in the rank 1 case and explains one of his examples in this case from the point of view of isocrystals.", "revisions": [ { "version": "v1", "updated": "2018-10-28T17:57:03.000Z" } ], "analyses": { "keywords": [ "isocrystals", "adic cohomology", "rham moduli space", "berkovich spaces", "proper curve" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }