{ "id": "1810.11810", "version": "v1", "published": "2018-10-28T13:22:30.000Z", "updated": "2018-10-28T13:22:30.000Z", "title": "Random walk on comb-type subsets of Z^2", "authors": [ "Endre Csaki", "Antonia Foldes" ], "comment": "22 pages", "categories": [ "math.PR" ], "abstract": "We study the path behavior of the simple symmetric walk on some comb-type subsets of Z^2 which are obtained from Z^2 by removing all horizontal edges belonging to certain sets of values on the y-axis. We obtain some strong approximation results and discuss their consequences.", "revisions": [ { "version": "v1", "updated": "2018-10-28T13:22:30.000Z" } ], "analyses": { "subjects": [ "60F17", "60G50", "60J65" ], "keywords": [ "comb-type subsets", "random walk", "strong approximation results", "simple symmetric walk", "path behavior" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }