{ "id": "1810.11642", "version": "v1", "published": "2018-10-27T13:40:22.000Z", "updated": "2018-10-27T13:40:22.000Z", "title": "Some permutations over ${\\mathbb F}_p$ concerning primitive roots", "authors": [ "Li-Yuan Wang", "Hao Pan" ], "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime and let ${\\mathbb F}_p$ denote the finite field with $p$ elements. Suppose that $g$ is a primitive root of ${\\mathbb F}_p$. Define the permutation $\\tau_g:\\,{\\mathcal H}_p\\to{\\mathcal H}_p$ by $$ \\tau_g(b):=\\begin{cases} g^b,&\\text{if }g^b\\in{\\mathcal H}_p,\\\\ -g^b,&\\text{if }g^b\\not\\in{\\mathcal H}_p,\\\\ \\end{cases} $$ for each $b\\in{\\mathcal H}_p$, where ${\\mathcal H}_p=\\{1,2,\\ldots,(p-1)/2\\}$ is viewed as a subset of ${\\mathbb F}_p$. In this paper, we investigate the sign of $\\tau_g$. For example, if $p\\equiv 5\\pmod{8}$, then $$ (-1)^{|\\tau_g|}=(-1)^{\\frac{1}{4}(h(-4p)+2)} $$ for every primitive root $g$, where $h(-4p)$ is the class number of the imaginary quadratic field ${\\mathbb Q}(\\sqrt{-4p})$.", "revisions": [ { "version": "v1", "updated": "2018-10-27T13:40:22.000Z" } ], "analyses": { "keywords": [ "concerning primitive roots", "permutation", "imaginary quadratic field", "class number", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }