{ "id": "1810.11577", "version": "v1", "published": "2018-10-27T02:23:38.000Z", "updated": "2018-10-27T02:23:38.000Z", "title": "Faber-Krahn type inequalities and uniqueness of positive solutions on metric measure spaces", "authors": [ "Anup Biswas", "Janna Lierl" ], "categories": [ "math.PR", "math.AP", "math.SP" ], "abstract": "We consider a general class of metric measure spaces equipped with a regular Dirichlet form and then provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of the classical Lieb's inequality on metric measure spaces and (ii) uniqueness of nonnegative super-solutions on metric measure spaces. Finally, using heat-kernel estimates we generalize the local Faber-Krahn inequality recently obtained in [LS18].", "revisions": [ { "version": "v1", "updated": "2018-10-27T02:23:38.000Z" } ], "analyses": { "keywords": [ "metric measure spaces", "faber-krahn type inequalities", "positive solutions", "uniqueness", "local faber-krahn inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }