{ "id": "1810.11553", "version": "v1", "published": "2018-10-26T23:33:25.000Z", "updated": "2018-10-26T23:33:25.000Z", "title": "On the Lebesgue measure, Hausdorff dimension, and Fourier dimension of sums and products of subsets of Euclidean space", "authors": [ "Kyle Hambrook", "Krystal Taylor" ], "categories": [ "math.CA" ], "abstract": "We investigate the Lebesgue measure, Hausdorff dimension, and Fourier dimension of sets of the form $RY +Z, $ where $R \\subseteq (0,\\infty)$ and $Y, Z \\subset \\mathbb{R}^d$. Most notable, for each $\\alpha \\in [0,1]$ and for each non-empty set $Y \\subseteq \\mathbb{R}$, we prove the existence of a compact set $R \\subseteq (0,\\infty)$ such that $\\dim_H(R) = \\dim_F(R) = \\alpha$ and $\\dim_F(RY) \\geq \\min\\{ 1, \\dim_F(R) + \\dim_F(Y)\\}$. This work is a contribution to the set of problems which study the measure and dimension of images of subsets of Euclidean space under Lipschitz maps.", "revisions": [ { "version": "v1", "updated": "2018-10-26T23:33:25.000Z" } ], "analyses": { "subjects": [ "42B10", "28A75", "28A80" ], "keywords": [ "hausdorff dimension", "fourier dimension", "lebesgue measure", "euclidean space", "non-empty set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }