{ "id": "1810.11278", "version": "v1", "published": "2018-10-26T11:48:08.000Z", "updated": "2018-10-26T11:48:08.000Z", "title": "Supports and extreme points in Lipschitz-free spaces", "authors": [ "Ramón J. Aliaga", "Eva Pernecká" ], "categories": [ "math.FA" ], "abstract": "For a complete metric space $M$, we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space $\\mathcal{F}(M)$ are precisely the elementary molecules $(\\delta(p)-\\delta(q))/d(p,q)$ defined by pairs of points $p,q$ in $M$ such that the triangle inequality $d(p,q)