{ "id": "1810.11202", "version": "v1", "published": "2018-10-26T06:47:35.000Z", "updated": "2018-10-26T06:47:35.000Z", "title": "Orderability of Homology Spheres Obtained by Dehn Filling", "authors": [ "Xinghua Gao" ], "comment": "30 pages, 17 figures", "categories": [ "math.GT" ], "abstract": "In this paper, I construct the holonomy extension locus of a $\\mathbb{Q}$-homology solid torus which is an analog of its translation extension locus. Using extension loci, I study $\\mathbb{Q}$-homology 3-spheres coming from Dehn fillings of $\\mathbb{Q}$-homology solid tori and construct intervals of orderable Dehn fillings.", "revisions": [ { "version": "v1", "updated": "2018-10-26T06:47:35.000Z" } ], "analyses": { "keywords": [ "homology spheres", "homology solid torus", "orderability", "holonomy extension locus", "translation extension locus" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }