{ "id": "1810.11110", "version": "v1", "published": "2018-10-25T21:14:26.000Z", "updated": "2018-10-25T21:14:26.000Z", "title": "On the optimal rate of equidistribution in number fields", "authors": [ "Mikolaj Fraczyk", "Anna Szumowicz" ], "comment": "41 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "Let $k$ be a number field. We study how well can finite sets of $\\mathcal O_k$ equidistribute modulo powers of prime ideals, for all prime ideals at the same time. Our main result states that the optimal rate of equidistribution in $\\mathcal O_k$ predicted by the local contstraints cannot be achieved unless $k=\\mathcal Q$. We deduce that $\\mathcal Q$ is the only number field where the ring of integers $\\mathcal O_k$ admits a simultaneous $\\frak p$-ordering, answering a question of Bhargava. Along the way we establish a non-trivial upper bound on the number of solutions $x\\in \\mathcal O_k$ of the inequality $|N_{k/\\mathcal Q}(x(a-x))|\\leq X^2$ where $X$ is a positive real parameter and $a\\in\\mathcal O_k$ is of norm at least $e^{-B}X$ for a fixed real number $B$. The latter can be translated as an upper bound on the average number of solutions of certain unit equations in $\\mathcal O_k$.", "revisions": [ { "version": "v1", "updated": "2018-10-25T21:14:26.000Z" } ], "analyses": { "subjects": [ "11N25", "11K38", "13F20", "11D57" ], "keywords": [ "number field", "optimal rate", "equidistribution", "prime ideals", "main result states" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }