{ "id": "1810.10445", "version": "v1", "published": "2018-10-24T15:17:32.000Z", "updated": "2018-10-24T15:17:32.000Z", "title": "Numerical radius parallelism of Hilbert space operators", "authors": [ "Marzieh Mehrazin", "Maryam Amyari", "Ali Zamani" ], "categories": [ "math.FA" ], "abstract": "In this paper, we introduce a new type of parallelism for bounded linear operators on a Hilbert space $\\big(\\mathscr{H}, \\langle \\cdot ,\\cdot \\rangle\\big)$ based on numerical radius. More precisely, we consider operators $T$ and $S$ which satisfy $\\omega(T + \\lambda S) = \\omega(T)+\\omega(S)$ for some complex unit $\\lambda$. We show that $T \\parallel_{\\omega} S$ if and only if there exists a sequence of unit vectors $\\{x_n\\}$ in $\\mathscr{H}$ such that \\begin{align*} \\lim_{n\\rightarrow\\infty} \\big|\\langle Tx_n, x_n\\rangle\\langle Sx_n, x_n\\rangle\\big| = \\omega(T)\\omega(S). \\end{align*} We then apply it to give some applications.", "revisions": [ { "version": "v1", "updated": "2018-10-24T15:17:32.000Z" } ], "analyses": { "subjects": [ "46B20", "47L05", "47A12" ], "keywords": [ "hilbert space operators", "numerical radius parallelism", "bounded linear operators", "complex unit", "unit vectors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }