{ "id": "1810.10424", "version": "v1", "published": "2018-10-24T14:36:32.000Z", "updated": "2018-10-24T14:36:32.000Z", "title": "Quadratic forms connected with Fourier coefficients of holomorphic and Maass cusp forms", "authors": [ "Giamila Zaghloul" ], "comment": "10 pages", "journal": "Jornal of Number Theory 167 (2016) 118-127", "doi": "10.1016/j.jnt.2016.03.018", "categories": [ "math.NT" ], "abstract": "In this work we prove a prime number type theorem involving the normalised Fourier coefficients of holomorphic and Maass cusp forms, using the classical circle method. A key point is in a recent paper of Fouvry and Ganguly, based on Hoffstein-Ramakrishnan's result about the non-existence of the Siegel zeros for $GL(2)$ $L$-functions, which allows us to improve preceding estimates.", "revisions": [ { "version": "v1", "updated": "2018-10-24T14:36:32.000Z" } ], "analyses": { "subjects": [ "11F30" ], "keywords": [ "maass cusp forms", "quadratic forms", "holomorphic", "prime number type theorem", "siegel zeros" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }