{ "id": "1810.10232", "version": "v1", "published": "2018-10-24T07:57:58.000Z", "updated": "2018-10-24T07:57:58.000Z", "title": "Global existence and lifespan for semilinear wave equations with mixed nonlinear terms", "authors": [ "Wei Dai", "Daoyuan Fang", "Chengbo Wang" ], "comment": "21 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "Firstly, we study the equation $\\square u = |u|^{q_c}+ |\\partial u|^p$ with small data, where $q_c$ is the critical power of \\emph{Strauss} conjecture and $p\\geq q_c.$ We obtain the optimal lifespan $\\ln({T_\\varepsilon})\\approx\\varepsilon^{-q_c(q_c-1)}$ in $n=3$, and improve the lower-bound of $T_\\varepsilon$ from $\\exp({c\\varepsilon^{-(q_c-1)}})$ to $\\exp({c\\varepsilon^{-(q_c-1)^2/2}})$ in $n=2$. Then, we study the Cauchy problem with small initial data for a system of semilinear wave equations $\\square u = |v|^q,$ $ \\square v = |\\partial_t u|^p$ in 3-dimensional space with $q<2$. We obtain that this system admits a global solution above a $p-q$ curve for spherically symmetric data. On the contrary, we get a new region where the solution will blow up.", "revisions": [ { "version": "v1", "updated": "2018-10-24T07:57:58.000Z" } ], "analyses": { "subjects": [ "35L05", "35L15", "35L70" ], "keywords": [ "semilinear wave equations", "mixed nonlinear terms", "global existence", "small initial data", "small data" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }