{ "id": "1810.10145", "version": "v1", "published": "2018-10-24T01:02:02.000Z", "updated": "2018-10-24T01:02:02.000Z", "title": "Sojourn times of Gaussian processes with trend", "authors": [ "Krzysztof Debicki", "Peng Liu", "Zbigniew Michna" ], "comment": "25 pages", "categories": [ "math.PR" ], "abstract": "We derive exact tail asymptotics of sojourn time above the level $u\\geq 0$ $$ \\mathbb{P}\\left(v(u)\\int_0^T \\mathbb{I}(X(t)-ct>u)d t>x\\right), \\quad x\\geq 0 $$ as $u\\to\\infty$, where $X$ is a Gaussian process with continuous sample paths, $c>0$, $v(u)$ is a positive function of $u$ and $T\\in (0,\\infty]$. Additionally, we analyze asymptotic distributional properties of $$\\tau_u(x):=\\inf\\left\\{t\\geq 0: v(u)\\frac{1}{\\Delta_I(u)} \\int_0^t \\mathbb{I}(X(s)-cs>u)d s>x\\right\\}, $$ as $u\\to\\infty$, $x\\geq 0$, where $\\inf\\emptyset=\\infty$. The findings of this contribution are illustrated by a detailed analysis of a class of Gaussian processes with stationary increments.", "revisions": [ { "version": "v1", "updated": "2018-10-24T01:02:02.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70" ], "keywords": [ "gaussian process", "sojourn time", "analyze asymptotic distributional properties", "derive exact tail asymptotics", "stationary increments" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }