{ "id": "1810.09649", "version": "v1", "published": "2018-10-23T04:12:28.000Z", "updated": "2018-10-23T04:12:28.000Z", "title": "$\\partial$-reducible handle additions", "authors": [ "Han Lou", "Mingxing Zhang" ], "comment": "10 pages, 8 figures", "categories": [ "math.GT" ], "abstract": "Let $M$ be a simple 3-manifold, and $F$ be a component of $\\partial M$ of genus at least 2. Let $\\alpha$ and $\\beta$ be separating slopes on $F$. Let $M(\\alpha)$ (resp.$M(\\beta)$) be the manifold obtained by adding a 2-handle along $\\alpha$ (resp.$\\beta$). If $M(\\alpha)$ and $M(\\beta)$ are $\\partial$-reducible, then the distance (intersection number) between $\\alpha$ and $\\beta$ is at most 8.", "revisions": [ { "version": "v1", "updated": "2018-10-23T04:12:28.000Z" } ], "analyses": { "subjects": [ "57M50" ], "keywords": [ "reducible handle additions", "intersection number", "separating slopes" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }