{ "id": "1810.08813", "version": "v1", "published": "2018-10-20T14:31:43.000Z", "updated": "2018-10-20T14:31:43.000Z", "title": "On the semigroup ring of holomorphic Artin L-functions", "authors": [ "Mircea Cimpoeas" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "Let $K/\\mathbb Q$ be a finite Galois extension and let $\\chi_1,\\ldots,\\chi_r$ be the irreducible characters of the Galois group $G:=Gal(K/\\mathbb Q)$. Let $f_1:=L(s,\\chi_1),\\ldots,f_r:=L(s,\\chi_r)$ be their associated Artin L-functions. For $s_0\\in \\mathbb C\\setminus\\{1\\}$, we denote $Hol(s_0)$ the semigroup of Artin $L$-functions, holomorphic at $s_0$. Let $\\mathbb F$ be a field with $\\mathbb C \\subseteq \\mathbb F \\subseteq \\mathcal M_{<1}:=$ the field of meromorphic functions of order $<1$. We note that the semigroup ring $\\mathbb F[Hol(s_0)]$ is isomorphic to a toric ring $\\mathbb F[H(s_0)]\\subseteq \\mathbb F[x_1,\\ldots,x_r]$, where $H(s_0)$ is an affine subsemigroup of $\\mathbb N^r$ minimally generated by at least $r$ elements, and we describe $\\mathbb F[H(s_0)]$ when the toric ideal $I_{H(s_0)}=(0)$. Also, we describe $\\mathbb F[H(s_0)]$ and $I_{H(s_0)}$ when $f_1,\\ldots,f_r$ have only simple zeros and simple poles at $s_0$.", "revisions": [ { "version": "v1", "updated": "2018-10-20T14:31:43.000Z" } ], "analyses": { "subjects": [ "11R42", "16S36" ], "keywords": [ "holomorphic artin l-functions", "semigroup ring", "finite galois extension", "associated artin l-functions", "simple zeros" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }