{ "id": "1810.08127", "version": "v1", "published": "2018-10-18T16:01:45.000Z", "updated": "2018-10-18T16:01:45.000Z", "title": "Hausdorff dimension of pinned distance sets and the $L^2$-method", "authors": [ "Bochen Liu" ], "comment": "7 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We prove that for any $E\\subset{\\Bbb R}^2$, $\\dim_{\\mathcal{H}}(E)>1$, there exists $x\\in E$ such that the Hausdorff dimension of the pinned distance set $$\\Delta_x(E)=\\{|x-y|: y \\in E\\}$$ is no less than $\\min\\left\\{\\frac{4}{3}\\dim_{\\mathcal{H}}(E)-\\frac{2}{3}, 1\\right\\}$. This answers a question recently raised by Guth, Iosevich, Ou and Wang, as well as improves results of Keleti and Shmerkin.", "revisions": [ { "version": "v1", "updated": "2018-10-18T16:01:45.000Z" } ], "analyses": { "keywords": [ "pinned distance set", "hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }