{ "id": "1810.06390", "version": "v1", "published": "2018-10-11T15:30:33.000Z", "updated": "2018-10-11T15:30:33.000Z", "title": "Heisenberg uniqueness pairs for the Fourier transform on the Heisenberg group", "authors": [ "Somnath Ghosh", "R. K. Srivastava" ], "comment": "21 pages", "categories": [ "math.FA" ], "abstract": "In this article, we prove that a non-harmonic cone is Heisenberg uniqueness pair corresponding to the unit sphere for the symplectic Fourier transform on $\\mathbb C^n.$ Further, we derive that a sphere whose radius is not contained in the zero set of the Laguerre polynomials is a determining set for the spectral projections of the finite measure supported on the unit sphere. Finally, we give a simple proof a Benedick-Amrein-Berthier type theorem for the Heisenberg group using twisted translations.", "revisions": [ { "version": "v1", "updated": "2018-10-11T15:30:33.000Z" } ], "analyses": { "keywords": [ "heisenberg group", "unit sphere", "symplectic fourier transform", "benedick-amrein-berthier type theorem", "non-harmonic cone" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }