{ "id": "1810.06301", "version": "v1", "published": "2018-10-15T12:18:43.000Z", "updated": "2018-10-15T12:18:43.000Z", "title": "On compact Riemannian manifolds with harmonic weyl curvature", "authors": [ "Haiping Fu", "Huiya He" ], "categories": [ "math.DG" ], "abstract": "We give some rigidity theorems for an n$(\\geq4)$-dimensional compact Riemannian manifold with harmonic Weyl curvature, positive scalar curvature and positive constant $\\sigma_2$. Moreover, when $n=4,$ we prove that a 4-dimensional compact locally conformally flat Riemannian manifold with positive scalar curvature and positive constant $\\sigma_2$ is isometric to a quotient of the round $\\mathbb{S}^4$.", "revisions": [ { "version": "v1", "updated": "2018-10-15T12:18:43.000Z" } ], "analyses": { "keywords": [ "harmonic weyl curvature", "positive scalar curvature", "dimensional compact riemannian manifold", "locally conformally flat riemannian manifold", "positive constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }