{ "id": "1810.03859", "version": "v1", "published": "2018-10-09T08:44:18.000Z", "updated": "2018-10-09T08:44:18.000Z", "title": "Hardy's Inequality for Laguerre Expansions of Hermite Type", "authors": [ "Paweł Plewa" ], "comment": "15 pages", "doi": "10.1007/s00041-018-9642-2", "categories": [ "math.CA" ], "abstract": "Hardy's inequality for Laguerre expansions of Hermite type with the index $\\al\\in(\\{-1/2\\}\\cup[1/2,\\infty))^d$ is proved in the multi-dimensional setting with the exponent $3d/4$. We also obtain the sharp analogue of Hardy's inequality with $L^1$ norm replacing $H^1$ norm at the expense of increasing the exponent by an arbitrarily small value.", "revisions": [ { "version": "v1", "updated": "2018-10-09T08:44:18.000Z" } ], "analyses": { "subjects": [ "42C10", "42B30", "33C45" ], "keywords": [ "hardys inequality", "laguerre expansions", "hermite type", "arbitrarily small value", "sharp analogue" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }