{ "id": "1810.03841", "version": "v1", "published": "2018-10-09T07:57:00.000Z", "updated": "2018-10-09T07:57:00.000Z", "title": "Heights and periodic points for one-parameter families of Hénon maps", "authors": [ "Liang-Chung Hsia", "Shu Kawaguchi" ], "comment": "40 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "In this paper we study arithmetic properties of a one-parameter family ${\\mathbf H}$ of H\\'enon maps over the affine line. Given a family of initial points ${\\mathbf P}$ satisfying a natural condition, we show the height function $h_{{\\mathbf P}}$ associated to ${\\mathbf H}$ and ${\\mathbf P}$ is the restriction of the height function associated to a semipositive adelically metrized line bundle on projective line. We then show various local properties of $h_{{\\mathbf P}}$. Next we consider the set $\\Sigma({\\mathbf P})$ consisting of periodic parameter values, and study when $\\Sigma({\\mathbf P})$ is an infinite set or not. We also study unlikely intersections of periodic parameter values.", "revisions": [ { "version": "v1", "updated": "2018-10-09T07:57:00.000Z" } ], "analyses": { "keywords": [ "periodic points", "hénon maps", "one-parameter family", "periodic parameter values", "height function" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }