{ "id": "1810.03837", "version": "v1", "published": "2018-10-09T07:30:03.000Z", "updated": "2018-10-09T07:30:03.000Z", "title": "Lipschitz regularity for orthotropic functionals with nonstandard growth conditions", "authors": [ "Pierre Bousquet", "Lorenzo Brasco" ], "comment": "37 pages", "categories": [ "math.AP", "math.OC" ], "abstract": "We consider a model convex functional with orthotropic structure and super-quadratic nonstandard growth conditions. We prove that bounded local minimizers are locally Lipschitz, with no restrictions on the ratio between the highest and the lowest growth rate.", "revisions": [ { "version": "v1", "updated": "2018-10-09T07:30:03.000Z" } ], "analyses": { "subjects": [ "35J70", "35B65", "49K20" ], "keywords": [ "orthotropic functionals", "lipschitz regularity", "super-quadratic nonstandard growth conditions", "model convex functional", "lowest growth rate" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }