{ "id": "1810.03299", "version": "v1", "published": "2018-10-08T07:59:52.000Z", "updated": "2018-10-08T07:59:52.000Z", "title": "Spanning trees in random graphs", "authors": [ "Richard Montgomery" ], "comment": "68 pages, 31 figures", "categories": [ "math.CO" ], "abstract": "For each $\\Delta>0$, we prove that there exists some $C=C(\\Delta)$ for which the binomial random graph $G(n,C\\log n/n)$ almost surely contains a copy of every tree with $n$ vertices and maximum degree at most $\\Delta$. In doing so, we confirm a conjecture by Kahn.", "revisions": [ { "version": "v1", "updated": "2018-10-08T07:59:52.000Z" } ], "analyses": { "keywords": [ "spanning trees", "binomial random graph", "maximum degree", "surely contains" ], "note": { "typesetting": "TeX", "pages": 68, "language": "en", "license": "arXiv", "status": "editable" } } }