{ "id": "1810.03055", "version": "v1", "published": "2018-10-06T21:02:18.000Z", "updated": "2018-10-06T21:02:18.000Z", "title": "Superlinear elliptic inequalities on manifolds", "authors": [ "Alexander Grigor'yan", "Yuhua Sun", "Igor Verbitsky" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "Let $M$ be a complete non-compact Riemannian manifold and let $\\sigma $ be a Radon measure on $M$. We study the problem of existence or non-existence of positive solutions to a semilinear elliptic inequaliy \\begin{equation*} -\\Delta u\\geq \\sigma u^{q}\\quad \\text{in}\\,\\,M, \\end{equation*} where $q>1$. We obtain necessary and sufficent criteria for existence of positive solutions in terms of Green function of $\\Delta $. In particular, explicit necessary and sufficient conditions are given when $M$ has nonnegative Ricci curvature everywhere in $M$, or more generally when Green's function satisfies the 3G-inequality.", "revisions": [ { "version": "v1", "updated": "2018-10-06T21:02:18.000Z" } ], "analyses": { "subjects": [ "35J61", "58J05", "31B10", "42B37" ], "keywords": [ "superlinear elliptic inequalities", "complete non-compact riemannian manifold", "greens function satisfies", "positive solutions", "semilinear elliptic inequaliy" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }