{ "id": "1810.03003", "version": "v1", "published": "2018-10-06T13:51:31.000Z", "updated": "2018-10-06T13:51:31.000Z", "title": "Locally invertible $σ$-harmonic mappings", "authors": [ "Giovanni Alessandrini", "Vincenzo Nesi" ], "comment": "8 pages", "categories": [ "math.AP" ], "abstract": "We extend a classical theorem by H. Lewy to planar $\\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\\rm div} (\\sigma \\nabla u^i)=0$ , for $i=1,2$. A similar result is established for pairs of solutions of certain second order non--divergence equations.", "revisions": [ { "version": "v1", "updated": "2018-10-06T13:51:31.000Z" } ], "analyses": { "subjects": [ "30C62", "35J55" ], "keywords": [ "harmonic mappings", "locally invertible", "second order non-divergence equations", "divergence structure elliptic equation", "similar result" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }