{ "id": "1810.01526", "version": "v1", "published": "2018-10-02T21:26:19.000Z", "updated": "2018-10-02T21:26:19.000Z", "title": "Rank Inequalities on Knot Floer Homology of Periodic Knots", "authors": [ "Keegan Boyle" ], "comment": "11 pages", "categories": [ "math.GT" ], "abstract": "Let $\\widetilde{K}$ be a 2-periodic knot in $S^3$ with quotient $K$. We prove a rank inequality between the knot Floer homology of $\\widetilde{K}$ and the knot Floer homology of $K$ using a spectral sequence of Hendricks, Lipshitz and Sarkar. We also conjecture a filtered refinement of this inequality, for which we give computational evidence, and produce applications to the Alexander polynomials of $\\widetilde{K}$ and $K$.", "revisions": [ { "version": "v1", "updated": "2018-10-02T21:26:19.000Z" } ], "analyses": { "subjects": [ "57M25", "57R58" ], "keywords": [ "knot floer homology", "rank inequality", "periodic knots", "spectral sequence", "computational evidence" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }