{ "id": "1810.00762", "version": "v1", "published": "2018-10-01T15:35:16.000Z", "updated": "2018-10-01T15:35:16.000Z", "title": "On fundamental Fourier coefficients of Siegel modular forms", "authors": [ "Siegfried Bocherer", "Soumya Das" ], "comment": "28 pages", "categories": [ "math.NT" ], "abstract": "We prove that if $F$ is a non-zero (possibly non-cuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many non-zero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms.", "revisions": [ { "version": "v1", "updated": "2018-10-01T15:35:16.000Z" } ], "analyses": { "subjects": [ "11F30", "11F46", "11F50" ], "keywords": [ "fundamental fourier coefficients", "vector-valued siegel modular form", "non-zero fourier coefficients", "half-integral matrices", "induction argument" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }