{ "id": "1809.10800", "version": "v1", "published": "2018-09-27T23:37:58.000Z", "updated": "2018-09-27T23:37:58.000Z", "title": "On two-weight norm inequalities for positive dyadic operators", "authors": [ "Timo S. Hänninen", "Igor E. Verbitsky" ], "comment": "19 pages", "categories": [ "math.CA" ], "abstract": "Let $\\sigma$ and $\\omega$ be locally finite Borel measures on $\\mathbb{R}^d$, and let $p\\in(1,\\infty)$ and $q\\in(0,\\infty)$. We study the two-weight norm inequality $$ \\lVert T(f\\sigma) \\rVert_{L^q(\\omega)}\\leq C \\lVert f \\rVert_{L^p(\\sigma)}, \\quad \\text{for all} \\, \\, f \\in L^p(\\sigma), $$ for both the positive summation operators $T=T_\\lambda(\\cdot \\sigma)$ and positive maximal operators $T=M_\\lambda(\\cdot \\sigma)$. Here, for a family $\\{\\lambda_Q\\}$ of non-negative reals indexed by the dyadic cubes $Q$, these operators are defined by $$ T_\\lambda(f\\sigma):=\\sum_Q \\lambda_Q \\langle f\\rangle^\\sigma_Q 1_Q \\quad\\text{ and } \\quad M_\\lambda(f\\sigma):=\\sup_Q \\lambda_Q \\langle f\\rangle^\\sigma_Q 1_Q, $$ where $\\langle f\\rangle^\\sigma_Q:=\\frac{1}{\\sigma(Q)} \\int_Q |f| d \\sigma.$ We obtain new characterizations of the two-weight norm inequalities in the following cases: 1. For $T=T_\\lambda(\\cdot\\sigma)$ in the subrange $q