{ "id": "1809.09831", "version": "v1", "published": "2018-09-26T07:21:58.000Z", "updated": "2018-09-26T07:21:58.000Z", "title": "Large global solutions for nonlinear Schrödinger equations I, mass-subcritical cases", "authors": [ "Marius Beceanu", "Qingquan Deng", "Avy Soffer", "Yifei Wu" ], "comment": "36 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper, we consider the nonlinear Schr\\\"odinger equation, $$ i\\partial_{t}u+\\Delta u= \\mu|u|^p u, \\quad (t,x)\\in \\mathbb{R}^{d+1}, $$ with $\\mu=\\pm1, p>0$. In this work, we consider the mass-subcritical cases, that is, $p\\in (0,\\frac4d)$. We prove that under some restrictions on $d,p$, any radial initial data in the critical space $\\dot H^{s_c}(\\mathbb{R}^d)$ with compact support, implies global well-posedness.", "revisions": [ { "version": "v1", "updated": "2018-09-26T07:21:58.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A01" ], "keywords": [ "nonlinear schrödinger equations", "large global solutions", "mass-subcritical cases", "radial initial data", "implies global well-posedness" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }