{ "id": "1809.09726", "version": "v1", "published": "2018-09-25T21:11:52.000Z", "updated": "2018-09-25T21:11:52.000Z", "title": "Sharp Remez inequality", "authors": [ "S. Tikhonov", "P. Yuditskii" ], "comment": "12 pages, 1 figure", "categories": [ "math.CA" ], "abstract": "Let an algebraic polynomial $P_n(\\zeta)$ of degree $n$ be such that $|P_n(\\zeta)|\\le 1$ for $\\zeta\\in E\\subset\\mathbb{T}$ and $|E|\\ge 2\\pi -s$. We prove the sharp Remez inequality $$ \\sup_{\\zeta\\in\\mathbb{T}}|P_n(\\zeta)|\\le \\mathfrak{T}_{n}\\left(\\sec \\frac{s} 4\\right),$$ where $\\mathfrak{T}_{n}$ is the Chebyshev polynomial of degree $n$. The equality holds if and only if $$ P_n(e^{iz})=e^{i(nz/2+c_1)}\\mathfrak{T}_n\\left(\\sec\\frac s 4\\cos \\frac {z-c_0} 2\\right), \\quad c_0,c_1\\in\\mathbb{R}. $$ This gives the solution of the long-standing problem on the sharp constant in the Remez inequality for trigonometric polynomials.", "revisions": [ { "version": "v1", "updated": "2018-09-25T21:11:52.000Z" } ], "analyses": { "subjects": [ "41A17", "41A44", "30C35", "41A50" ], "keywords": [ "sharp remez inequality", "algebraic polynomial", "trigonometric polynomials", "equality holds", "sharp constant" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }