{ "id": "1809.09394", "version": "v1", "published": "2018-09-25T10:12:01.000Z", "updated": "2018-09-25T10:12:01.000Z", "title": "Large annihilator category O for sl_{\\infty}, o_{\\infty}, sp_{\\infty}", "authors": [ "Ivan Penkov", "Vera Serganova" ], "categories": [ "math.RT" ], "abstract": "We construct a new analogue of the BGG category $\\mathcal O$ for the infinite-dimensional Lie algebras $\\fg=\\mathfrak{sl}(\\infty),\\mathfrak{o}(\\infty), \\mathfrak{sp}(\\infty)$. A main difference with the categories studied in \\cite{Nam} and \\cite{CP} is that all objects of our category satisfy the large annihilator condition introduced in \\cite{DPS}. Despite the fact that the splitting Borel subalgebras $\\fb$ of $\\fg$ are not conjugate, one can eliminate the dependency on the choice of $\\fb$ and introduce a universal highest weight category $\\mathcal {OLA}$ of $\\fg$-modules, the letters $\\mathcal{LA}$ coming from \"large annihilator\". The subcategory of integrable objects in $\\mathcal {OLA}$ is precisely the category $\\mathbb T_{\\fg}$ studied in \\cite{DPS}. We investigate the structure of $\\mathcal {OLA}$, and in particular compute the multiplicities of simple objects in standard objects and the multiplicities of standard objects in indecomposable injectives.", "revisions": [ { "version": "v1", "updated": "2018-09-25T10:12:01.000Z" } ], "analyses": { "subjects": [ "17B65", "16S37", "17B55" ], "keywords": [ "large annihilator category", "standard objects", "universal highest weight category", "large annihilator condition", "infinite-dimensional lie algebras" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }