{ "id": "1809.08743", "version": "v1", "published": "2018-09-24T03:57:22.000Z", "updated": "2018-09-24T03:57:22.000Z", "title": "A multiplicity one theorem for $\\mathrm{GL}_n$ and $\\mathrm{SL}_n$ over complete discrete valuation rings", "authors": [ "Shiv Prakash Patel", "Pooja Singla" ], "comment": "13 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{o}$ be the ring of integers of a non-archimedian local field with maximal ideal $\\mathfrak{p}$ and finite residue field of characteristic $p.$ For $\\ell \\geq 1,$ let $\\mathfrak{o}_\\ell = \\mathfrak{o}/\\mathfrak{p}^\\ell,$ $\\mathbf{G}(\\mathfrak{o}_\\ell) = {\\rm GL}_{n}(\\mathfrak{o}_\\ell)$ or ${\\rm SL}_{n}(\\mathfrak{o}_{\\ell})$ and $U(\\mathfrak{o}_{\\ell}) \\subset \\mathbf{G}(\\mathfrak{o}_{\\ell})$ be the subgroup of upper triangular unipotent matrices. We prove that the induced representation $\\mathrm{Ind}^{\\mathbf{G}(\\mathfrak{o}_\\ell)}_{U(\\mathfrak{o}_\\ell)}(\\theta)$ of $\\mathbf{G}(\\mathfrak{o}_{\\ell})$ obtained from a non-degenerate character $\\theta$ of $U(\\mathfrak{o}_\\ell)$ is multiplicity free. This is analogous to the multiplicity one theorem in Gelfand-Graev representation for Chevalley groups. We also prove that for all $\\mathbf{G}(\\mathfrak{o}_\\ell),$ except for ${\\rm SL}_{n}(\\mathfrak{o}_{\\ell})$ with even $p$ or $p \\mid n,$ an irreducible representation of $\\mathbf{G}(\\mathfrak{o}_\\ell)$ is a constituent of $\\mathrm{Ind}^{\\mathbf{G}(\\mathfrak{o}_\\ell)}_{U(\\mathfrak{o}_\\ell)}(\\theta)$ if and only if it is regular.", "revisions": [ { "version": "v1", "updated": "2018-09-24T03:57:22.000Z" } ], "analyses": { "subjects": [ "20G05", "20G25" ], "keywords": [ "complete discrete valuation rings", "multiplicity", "upper triangular unipotent matrices", "non-archimedian local field", "finite residue field" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }