{ "id": "1809.08679", "version": "v1", "published": "2018-09-23T21:03:05.000Z", "updated": "2018-09-23T21:03:05.000Z", "title": "A Phragmén-Lindelöf property of viscosity solutions to a class of doubly nonlinear parabolic equations: Bounded Case", "authors": [ "Tilak Bhattacharya", "Leonardo Marazzi" ], "comment": "33 pages", "categories": [ "math.AP" ], "abstract": "We study Phragm\\'en-Lindel\\\"of properties for viscosity solutions to a class of nonlinear parabolic equations of the type $H(Du, D^2u+Z(u)Du\\otimes Du)+\\chi(t)|Du|^\\sigma-u_t=0$ under a certain boundedness condition on $H$. We also state results for positive solutions to a class of doubly nonlinear equation $H(Du, D^2u)-f(u)u_t=0$.", "revisions": [ { "version": "v1", "updated": "2018-09-23T21:03:05.000Z" } ], "analyses": { "keywords": [ "doubly nonlinear parabolic equations", "viscosity solutions", "phragmén-lindelöf property", "bounded case", "state results" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }