{ "id": "1809.08623", "version": "v1", "published": "2018-09-23T16:11:31.000Z", "updated": "2018-09-23T16:11:31.000Z", "title": "The rings of Hilbert modular forms for $\\mathbb{Q}(\\sqrt{29})$ and $\\mathbb{Q}(\\sqrt{37})$", "authors": [ "Brandon Williams" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "We use Borcherds products and their restrictions to Hirzebruch-Zagier curves to determine generators and relations for the graded rings of Hilbert modular forms for the fields $\\mathbb{Q}(\\sqrt{29})$ and $\\mathbb{Q}(\\sqrt{37})$. These seem to be the first cases where the graded ring can be computed despite obstructions to the existence of Borcherds products with arbitrary divisors.", "revisions": [ { "version": "v1", "updated": "2018-09-23T16:11:31.000Z" } ], "analyses": { "subjects": [ "11F27", "11F41" ], "keywords": [ "hilbert modular forms", "borcherds products", "hirzebruch-zagier curves", "determine generators", "arbitrary divisors" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }