{ "id": "1809.08408", "version": "v1", "published": "2018-09-22T08:42:42.000Z", "updated": "2018-09-22T08:42:42.000Z", "title": "On tensor products of irreducible integrable representations", "authors": [ "Shifra Reif", "R. Venkatesh" ], "comment": "16 pages. Comments are welcome", "categories": [ "math.RT" ], "abstract": "We consider integrable category $\\mathcal{O}$ representations of Borcherds--Kac--Moody algebras whose Cartan matrix is finite dimensional, and determine the necessary and sufficient conditions for which the tensor product of irreducible representations from this category is isomorphic to another. This result generalizes a fundamental result of C. S. Rajan on unique factorization of tensor products of finite dimensional irreducible representations of finite dimensional simple Lie algebras over complex numbers.", "revisions": [ { "version": "v1", "updated": "2018-09-22T08:42:42.000Z" } ], "analyses": { "subjects": [ "17B10", "17B67" ], "keywords": [ "tensor product", "irreducible integrable representations", "finite dimensional simple lie algebras", "finite dimensional irreducible representations" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }