{ "id": "1809.08269", "version": "v1", "published": "2018-09-21T19:00:55.000Z", "updated": "2018-09-21T19:00:55.000Z", "title": "Upsilon invariants from cyclic branched covers", "authors": [ "Antonio Alfieri", "Daniele Celoria", "Andras Stipsicz" ], "comment": "26 pages, 13 figures. Comments are welcome!", "categories": [ "math.GT" ], "abstract": "We extend the construction of upsilon-type invariants to null-homologous knots in rational homology three-spheres. By considering $m$-fold cyclic branched covers with $m$ a prime power, this extension provides new knot concordance invariants $\\Upsilon_m^C (K)$. We give computations of these invariants for some families of alternating knots and reprove some independence results.", "revisions": [ { "version": "v1", "updated": "2018-09-21T19:00:55.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "upsilon invariants", "knot concordance invariants", "fold cyclic branched covers", "rational homology three-spheres", "independence results" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }