{ "id": "1809.07733", "version": "v1", "published": "2018-09-20T16:50:46.000Z", "updated": "2018-09-20T16:50:46.000Z", "title": "Reverse Markov- and Bernstein-type inequalities for incomplete polynomials", "authors": [ "Tamás Erdélyi" ], "comment": "submitted to Journal of Approximation Theory", "categories": [ "math.CA" ], "abstract": "Let ${\\mathcal P}_k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${\\mathcal P}_{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$\\|f\\|_A := \\sup_{x \\in A}{|f(x)|}$$ for real-valued functions $f$ defined on a set $A \\subset {\\Bbb R}$. Let $$V_a^b(f) := \\int_a^b{|f^{\\prime}(x)| \\, dx}$$ denote the total variation of a continuously differentiable function $f$ on an interval $[a,b]$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 \\frac nk\\leq \\min_{P \\in {\\mathcal P}_{n,k}}{\\frac{\\|P^{\\prime}\\|_{[0,1]}}{V_0^1(P)}} \\leq \\min_{P \\in {\\mathcal P}_{n,k}}{\\frac{\\|P^{\\prime}\\|_{[0,1]}}{|P(1)|}} \\leq c_2 \\left( \\frac nk + 1 \\right)$$ for all integers $n \\geq 1$ and $k \\geq 1$. We also prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 \\left(\\frac nk\\right)^{1/2} \\leq \\min_{P \\in {\\mathcal P}_{n,k}}{\\frac{\\|P^{\\prime}(x)\\sqrt{1-x^2}\\|_{[0,1]}}{V_0^1(P)}} \\leq \\min_{P \\in {\\mathcal P}_{n,k}}{\\frac{\\|P^{\\prime}(x)\\sqrt{1-x^2}\\|_{[0,1]}}{|P(1)|}} \\leq c_2 \\left(\\frac nk + 1\\right)^{1/2}$$ for all integers $n \\geq 1$ and $k \\geq 1$.", "revisions": [ { "version": "v1", "updated": "2018-09-20T16:50:46.000Z" } ], "analyses": { "subjects": [ "41A17" ], "keywords": [ "bernstein-type inequalities", "incomplete polynomials", "algebraic polynomials", "absolute constants", "real coefficients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }