{ "id": "1809.07167", "version": "v1", "published": "2018-09-19T13:15:39.000Z", "updated": "2018-09-19T13:15:39.000Z", "title": "The $16$-rank of $\\mathbb{Q}(\\sqrt{-p})$", "authors": [ "Peter Koymans" ], "categories": [ "math.NT" ], "abstract": "Recently, a density result for the $16$-rank of $\\text{Cl}(\\mathbb{Q}(\\sqrt{-p}))$ was established when $p$ varies among the prime numbers, assuming a short character sum conjecture. In this paper we prove the same density result unconditionally.", "revisions": [ { "version": "v1", "updated": "2018-09-19T13:15:39.000Z" } ], "analyses": { "subjects": [ "11R29", "11R45", "11N45" ], "keywords": [ "density result", "short character sum conjecture", "prime numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }