{ "id": "1809.06847", "version": "v1", "published": "2018-09-18T17:58:45.000Z", "updated": "2018-09-18T17:58:45.000Z", "title": "$L^{p}$-solutions of the Navier-Stokes equation with fractional Brownian noise", "authors": [ "Bendetta Ferrario", "Christian Olivera" ], "categories": [ "math.AP", "math.PR" ], "abstract": "We study the Navier-Stokes equations on a smooth bounded domain $D\\subset \\mathbb R^d$ ($d=2$ or 3), under the effect of an additive fractional Brownian noise. We show local existence and uniqueness of a mild $L^p$-solution for $p>d$.", "revisions": [ { "version": "v1", "updated": "2018-09-18T17:58:45.000Z" } ], "analyses": { "keywords": [ "navier-stokes equation", "additive fractional brownian noise", "smooth bounded domain", "local existence", "uniqueness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }