{ "id": "1809.06780", "version": "v1", "published": "2018-09-07T14:50:39.000Z", "updated": "2018-09-07T14:50:39.000Z", "title": "On the diameter of polytope", "authors": [ "Yaguang Yang" ], "comment": "6 pages", "categories": [ "math.MG", "math.CO", "math.OC" ], "abstract": "Bonifas et. al. \\cite{bsehn14} derived an upper bound of a polytope $P=\\{ x\\in \\mathbb{R}^n: Ax \\le b \\}$ where $A \\in \\mathbb{Z}^{m \\times n}$ and $m>n$. This comment indicates that their method can be applied to the case where $A \\in \\mathbb{R}^{m \\times n}$, which results in an upper bound of the diameter for the general polytope $\\mathcal{O} \\left( \\frac{n^3 \\Delta}{\\det(A^*)} \\right)$, where $\\Delta$ is the largest absolute value among all $(n-1) \\times (n-1)$ sub-determinants of $A$ and ${\\det(A^*)}$ is the smallest absolute value among all nonzero $n \\times n$ sub-determinants of $A$. For each given polytope, since $\\Delta$ and $\\det(A^*)$ are fixed, the diameter is bounded by $\\mathcal{O}(n^3)$.", "revisions": [ { "version": "v1", "updated": "2018-09-07T14:50:39.000Z" } ], "analyses": { "keywords": [ "upper bound", "smallest absolute value", "largest absolute value", "sub-determinants", "general polytope" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }