{ "id": "1809.06586", "version": "v1", "published": "2018-09-18T08:30:00.000Z", "updated": "2018-09-18T08:30:00.000Z", "title": "Two converse theorems for Maass forms", "authors": [ "Michael Neururer", "Thomas Oliver" ], "categories": [ "math.NT" ], "abstract": "We first prove a new converse theorem for Dirichlet series of Maass type which does not assume an Euler product. The underlying idea is a geometric generalisation of Weil's classical argument. By studying the asymptotics of hypergeometric functions, we then show that the theorem remains valid if we allow twists to have arbitrary poles.", "revisions": [ { "version": "v1", "updated": "2018-09-18T08:30:00.000Z" } ], "analyses": { "keywords": [ "converse theorem", "maass forms", "theorem remains valid", "dirichlet series", "geometric generalisation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }