{ "id": "1809.06397", "version": "v1", "published": "2018-09-17T18:28:07.000Z", "updated": "2018-09-17T18:28:07.000Z", "title": "Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations", "authors": [ "Janusz MierczyƄski", "Sylvia Novo", "Rafael Obaya" ], "comment": "20 pages", "categories": [ "math.DS", "math.CA" ], "abstract": "Linear skew-product semidynamical systems generated by random systems of delay differential equations are considered, both on a space of continuous functions as~well as on a space of $p$-summable functions. The main result states that in both cases, the Lyapunov exponents are identical, and that the Oseledets decompositions are related by natural embeddings.", "revisions": [ { "version": "v1", "updated": "2018-09-17T18:28:07.000Z" } ], "analyses": { "subjects": [ "37H15", "37L55", "34K06", "37A30", "60H25" ], "keywords": [ "delay differential equations", "random dynamical systems", "oseledets decomposition", "lyapunov exponents", "linear skew-product semidynamical systems" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }