{ "id": "1809.06085", "version": "v1", "published": "2018-09-17T09:17:43.000Z", "updated": "2018-09-17T09:17:43.000Z", "title": "Topological transitivity for cosine operators on Orlicz spaces", "authors": [ "Vishvesh Kumar", "Ibrahim Akbarbaglu", "Mohammad Reza Azimi" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "For a Young function $\\phi$ and a locally compact group $G,$ let $L^\\phi(G)$ denote the Orlicz space on $G.$ In this article, we present a necessary and sufficient condition for the topological transitivity of the cosine operators $C_n:=\\frac{1}{2}(T^n_{g,w}+S^n_{g,w})$ defined on $L^{\\phi}(G)$. We investigate the conditions for the cosine operators to be topological mixing. Moreover, we go on to prove the similar results for the direct sum of a sequence of the cosine operator. At the last, an example of a topological transitive cosine operator is given.", "revisions": [ { "version": "v1", "updated": "2018-09-17T09:17:43.000Z" } ], "analyses": { "subjects": [ "47A16", "46E30", "22D05" ], "keywords": [ "orlicz space", "topological transitivity", "locally compact group", "direct sum", "similar results" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }